Bioavailability of Labile and Desorption-resistant Phenanthrene Sorbed to Montmorillonite Clay Containing Humic Fractions

نویسندگان

  • MOHAMMED LAHLOU
  • JOSE JULIO ORTEGA-CALVO
چکیده

The biodegradation of 14C-labeled phenanthrene in the presence of particles of montmorillonite and fulvic and humic acid–montmorillonite complexes was studied in a batch system. A mathematical model that takes into account the contribution to mineralization by the slowly desorbing compound was used to calculate the initial mineralization rates. Sorption of phenanthrene to the particles was determined in sorption isotherms, and desorption was measured during successive water extractions. Mineralization rates in equilibrated suspensions were higher than predicted from aqueous equilibrium concentrations, and in some cases, montmorillonite and fulvic acid–montmorillonite complexes stimulated the phenanthrene transformation rates. In contrast with the high bioavailability exhibited by phenanthrene sorbed as a labile form, biodegradation of the desorption-resistant phenanthrene occurred slowly and followed zero-order kinetics, which indicated a limitation caused by slow desorption. The results suggest that the mechanism of sorption may cause a differential bioavailability of the sorbed compound. Keywords—Sorption Bioavailability Phenanthrene Biodegradation Clay

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil.

The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 microg/ml. Humic acid at 10 microg/ml stimul...

متن کامل

Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene.

The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates represe...

متن کامل

Bioavailability of desorption-resistant phenanthrene to the oligochaete Ilyodrilus templetoni.

We investigated bioavailability, as measured by the biota-sediment accumulation factor (BSAF), of reversibly sorbed and desorption-resistant phenanthrene to the deposit-feeding freshwater tubificid oligochaete Ilyodrilus templetoni. Desorption-resistant, phenanthrene-contaminated sediments were prepared by a sequential batch desorption method by washing with an isopropanol solution. The BSAFs a...

متن کامل

Sorption of 2,4,6-trichlorophenol in model humic acid-clay systems.

Humic acids and clays are important soil components that influence the sorption and desorption of organic contaminants; however, it is unclear how humic acids influence the sorption of organic contaminants onto clays and their subsequent desorption. Sorption and desorption of 2,4,6-trichlorophenol (2,4,6-TCP) by and from humic acid-modified K(+)- and Ca(2+)-montmorillonite and -illite were comp...

متن کامل

Assessment of bioavailability of soil-sorbed atrazine.

Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999